Auswahl der wissenschaftlichen Literatur zum Thema „Engineering, Computer|Biology, Bioinformatics|Computer Science“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Paraskevopoulou-Kollia, Efrosyni-Alkisti, und Pantelis G. Bagos. „Bioinformatics Education in Greece: A Survey“. Biosaintifika: Journal of Biology & Biology Education 9, Nr. 1 (12.03.2017): 1. http://dx.doi.org/10.15294/biosaintifika.v9i1.7257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
<p>Bioinformatics is an interdisciplinary field, placed at the interface of Biology, Mathematics and Computer Science. In this work, we tried for the first time to investigate the current situation of Bioinformatics education in Greece. We searched the online resources of all relevant University Departments for Bioinformatics or relevant courses. We found that all the Departments of Biological Sciences include in their curricula courses dedicated to Bioinformatics, but this is not the case for Departments of Computer Science, Computer Engineering, or Medical Schools. Despite the fact that large Universities played a crucial role in establishing Bioinformatics research and education in Greece, we observe that Universities of the periphery invest in the field, by including more relevant courses in the curricula and appointing faculty members trained in the field. In order for us to “triangulate” we didn’t confine ourselves to online resources and descriptive statistics but we also included interviews so as to have a more spherical view of the subject under discussion. The interviews provided useful insights regarding the teaching methods used by bioinformatics tutors, their attitudes and the difficulties they encounter. The tutors mentioned also the material that they choose, the audience’s attraction techniques and the feedback they receive.</p>
2

ADEBO, PHILIP. „A PRIMER ON BIOINFORMATICS“. International Journal of Advanced Research in Computer Science and Software Engineering 8, Nr. 4 (01.05.2018): 9. http://dx.doi.org/10.23956/ijarcsse.v8i4.589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACT Today biological research is experiencing explosive growth in academic, industry, and government sectors. Bioinformatics has emerged to make sense of such high volume and complex data. It is an interdisciplinary field that combines computer science, biology, engineering, and mathematics in order to develop methods, techniques, and tools for analyzing and interpreting biological data. It uses computational approaches to solve complex biological problems and analyze large-volume of biological data. This paper provides a primer on bioinformatics.
3

Doom, T., M. Raymer, D. Krane und O. Garcia. „Crossing the interdisciplinary barrier: a baccalaureate computer science option in bioinformatics“. IEEE Transactions on Education 46, Nr. 3 (August 2003): 387–93. http://dx.doi.org/10.1109/te.2003.814593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Heinemann, M., und S. Panke. „Synthetic biology--putting engineering into biology“. Bioinformatics 22, Nr. 22 (05.09.2006): 2790–99. http://dx.doi.org/10.1093/bioinformatics/btl469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kovats, Diane, Ron Shamir und Christiana Fogg. „Bonnie Berger named ISCB 2019 ISCB Accomplishments by a Senior Scientist Award recipient“. F1000Research 8 (23.05.2019): 721. http://dx.doi.org/10.12688/f1000research.19219.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The International Society for Computational Biology (ISCB) honors a leader in the fields of computational biology and bioinformatics each year with the Accomplishments by a Senior Scientist Award. This award is the highest honor conferred by ISCB to a scientist who is recognized for significant research, education, and service contributions. Bonnie Berger, Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) is the 2019 recipient of the Accomplishments by a Senior Scientist Award. She is receiving her award and presenting a keynote address at the 2019 Joint International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Basel, Switzerland on July 21-25, 2019.
6

Linshiz, Gregory, Alex Goldberg, Tania Konry und Nathan J. Hillson. „The Fusion of Biology, Computer Science, and Engineering: Towards Efficient and Successful Synthetic Biology“. Perspectives in Biology and Medicine 55, Nr. 4 (2012): 503–20. http://dx.doi.org/10.1353/pbm.2012.0044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Likić, Vladimir A., Malcolm J. McConville, Trevor Lithgow und Antony Bacic. „Systems Biology: The Next Frontier for Bioinformatics“. Advances in Bioinformatics 2010 (09.02.2010): 1–10. http://dx.doi.org/10.1155/2010/268925.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Biochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology, by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from ‘omics platform technologies, in particular “downstream” technologies relative to genome sequencing, including transcriptomics, proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date, particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms. The inevitable role bioinformatics plays in modern systems biology puts mathematical and computational sciences as an equal partner to analytical and experimental biology. Furthermore, mathematical and computational models are expected to become increasingly prevalent representations of our knowledge about specific biochemical systems.
8

Shegogue, Daniel, und W. Jim Zheng. „Object-oriented biological system integration: a SARS coronavirus example“. Bioinformatics 21, Nr. 10 (24.02.2005): 2502–9. http://dx.doi.org/10.1093/bioinformatics/bti344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Motivation The importance of studying biology at the system level has been well recognized, yet there is no well-defined process or consistent methodology to integrate and represent biological information at this level. To overcome this hurdle, a blending of disciplines such as computer science and biology is necessary. Results By applying an adapted, sequential software engineering process, a complex biological system (severe acquired respiratory syndrome-coronavirus viral infection) has been reverse-engineered and represented as an object-oriented software system. The scalability of this object-oriented software engineering approach indicates that we can apply this technology for the integration of large complex biological systems. Availability A navigable web-based version of the system is freely available at http://people.musc.edu/~zhengw/SARS/Software-Process.htm Contact zhengw@musc.edu Supplementary information Supplemental data: Table 1 and Figures 1–16.
9

Miller, W., S. Schwartz und R. C. Hardison. „A point of contact between computer science and molecular biology“. IEEE Computational Science and Engineering 1, Nr. 1 (1994): 69–78. http://dx.doi.org/10.1109/99.295375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tadmor, Brigitta, und Bruce Tidor. „Interdisciplinary research and education at the biology–engineering–computer science interface: a perspective“. Drug Discovery Today 10, Nr. 17 (September 2005): 1183–89. http://dx.doi.org/10.1016/s1359-6446(05)03540-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Dinh, Hieu Trung. „Algorithms for DNA Sequence Assembly and Motif Search“. University of Connecticut, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bao, Shunxing. „Algorithmic Enhancements to Data Colocation Grid Frameworks for Big Data Medical Image Processing“. Thesis, Vanderbilt University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13877282.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Large-scale medical imaging studies to date have predominantly leveraged in-house, laboratory-based or traditional grid computing resources for their computing needs, where the applications often use hierarchical data structures (e.g., Network file system file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance for laboratory-based approaches reveal that performance is impeded by standard network switches since typical processing can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. On the other hand, the grid may be costly to use due to the dedicated resources used to execute the tasks and lack of elasticity. With increasing availability of cloud-based big data frameworks, such as Apache Hadoop, cloud-based services for executing medical imaging studies have shown promise.

Despite this promise, our studies have revealed that existing big data frameworks illustrate different performance limitations for medical imaging applications, which calls for new algorithms that optimize their performance and suitability for medical imaging. For instance, Apache HBases data distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). Big data medical image processing applications involving multi-stage analysis often exhibit significant variability in processing times ranging from a few seconds to several days. Due to the sequential nature of executing the analysis stages by traditional software technologies and platforms, any errors in the pipeline are only detected at the later stages despite the sources of errors predominantly being the highly compute-intensive first stage. This wastes precious computing resources and incurs prohibitively higher costs for re-executing the application. To address these challenges, this research propose a framework - Hadoop & HBase for Medical Image Processing (HadoopBase-MIP) - which develops a range of performance optimization algorithms and employs a number of system behaviors modeling for data storage, data access and data processing. We also introduce how to build up prototypes to help empirical system behaviors verification. Furthermore, we introduce a discovery with the development of HadoopBase-MIP about a new type of contrast for medical imaging deep brain structure enhancement. And finally we show how to move forward the Hadoop based framework design into a commercialized big data / High performance computing cluster with cheap, scalable and geographically distributed file system.

3

Ren, Kaiyu. „Mapping biomedical terms to UMLS concepts by an efficient layered dynamic programming framework“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1398886613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sanga, Sandeep. „A Computational Systems Biology Approach to Predictive Oncology| A Computer Modeling and Bioinformatics Study Predicting Tumor Response to Therapy and Cancer Phenotypes“. Thesis, The University of Texas at Austin, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3684162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Technological advances in the recent decades have enabled cancer researchers to probe the disease at multiple resolutions. This wealth of experimental data combined with computational systems biology methods is now leading to predictive models of cancer progression and response to therapy. We begin by presenting our research group's multi-scale in silico framework for modeling cancer, whose core is a tissue-scale computational model capable of tracking the progression of tumors from a diffusion-limited avascular phase through angiogenesis, and into invasive lesions with realistic, complex morphologies. We adapt this core model to consider the delivery of systemically-administered anticancer agents and their effect on lesions once they reach their intended nuclear target. We calibrate the model parameters using in vitro data from the literature, and demonstrate through simulation that transport limitations affecting drug and oxygen distributions play a significant role in hampering the efficacy of chemotherapy; a result that has since been validated by in vitro experimentation. While this study demonstrates the capability of our adapted core model to predict distributions (e.g., cell density, pressure, oxygen, nutrient, drug) within lesions and consequent tumor morphology, nevertheless, the underlying factors driving tumor-scale behavior occur at finer scales. What is needed in our multi-scale approach is to parallel reality, where molecular signaling models predict cellular behavior, and ultimately drive what is seen at the tumor level. Models of signaling pathways linked to cell models are already beginning to surface in the literature. We next transition our research to the molecular level, where we employ data mining and bioinformatics methods to infer signaling relationships underlying a subset of breast cancer that might benefit from targeted therapy of Androgen Receptor and associated pathways. Defining the architecture of signaling pathways is a critical first step towards development of pathways models underlying tumor models, while also providing valuable insight for drug discovery. Finally, we develop an agent-based, cell-scale model focused on predicting motility in response to chemical signals in the microenvironment, generally accepted to be a necessary feature of cancer invasion and metastasis. This research demonstrates the use of signaling models to predict emergent cell behavior, such as motility. The research studies presented in this dissertation are critical steps towards developing a predictive, in silico computational model for cancer progression and response to therapy. Our Laboratory for Computational & Predictive Oncology, in collaboration with research groups throughout in the United States and Europe are following a computational systems biology paradigm where model development is fueled by biological knowledge, and model predictions are refining experimental focus. The ultimate objective is a virtual cancer simulator capable of accurately simulating cancer progression and response to therapy on a patient-specific basis.

5

Berry, Eric Zachary 1980. „Bioinformatics and database tools for glycans“. Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M. Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
Includes bibliographical references (leaves 75-76).
Recent advances in biology have afforded scientists with the knowledge that polysaccharides play an active role in modulating cellular activities. Glycosaminoglycans (GAGs) are one such family of polysaccharides that play a very important role in regulating the functions of numerous important signaling molecules and enzymes in the cell. Developing bioinformatics tools has been integral to advancing genomics and proteomics. While these tools have been well-developed to store and process sequence and structure information for proteins and DNA, they are very poorly developed for polysaccharides. Glycan structures pose special problems because of their tremendous information density per fundamental unit, their often-branched structures, and the complicated nature of their building blocks. The GlycoBank, an online database of known GAG structures and functions, has been developed to overcome many of these difficulties by developing a common notation for researchers to describe GAG sequences, a common repository to view known structure-function relationships, and the complex tools and searches needed to facilitate their work. This thesis focuses on the development of GlycoBank. In addition, a large, NIGMS-funded consortium, the Consortium for Functional Glycomics, is a larger database that also aims to store polysaccharide structure-function information of a broader collection of polysaccharides. The ideas and concepts implemented in developing GlycoBank were instrumental in developing databases and bioinformatics tools for the Consortium for Functional Glycomics.
by Eric Zachary Berry.
M.Eng.and S.B.
6

Guo, Xinyu. „Design of A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm and Its Implementation“. University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1338478834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kho, Soon Jye. „Sample Mislabeling Detection and Correction in Bioinformatics Experimental Data“. Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1629736147173188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bozdag, Doruk. „Graph Coloring and Clustering Algorithms for Science and Engineering Applications“. The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1229459765.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kalluru, Vikram Gajanan. „Identify Condition Specific Gene Co-expression Networks“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338304258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhong, Cuncong. „Computational Methods for Comparative Non-coding RNA Analysis: From Structural Motif Identification to Genome-wide Functional Classification“. Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Non-coding RNA (ncRNA) plays critical functional roles such as regulation, catalysis, and modification etc. in the biological system. Non-coding RNAs exert their functions based on their specific structures, which makes the thorough understanding of their structures a key step towards their complete functional annotation. In this dissertation, we will cover a suite of computational methods for the comparison of ncRNA secondary and 3D structures, and their applications to ncRNA molecular structural annotation and their genome-wide functional survey. Specifically, we have contributed the following five computational methods. First, we have developed an alignment algorithm to compare RNA structural motifs, which are recurrent RNA 3D structural fragments. Second, we have improved upon the previous alignment algorithm by incorporating base-stacking information and devise a new branch-and-bond algorithm. Third, we have developed a clustering pipeline for RNA structural motif classification using the above alignment methods. Fourth, we have generalized the clustering pipeline to a genome-wide analysis of RNA secondary structures. Finally, we have devised an ultra-fast alignment algorithm for RNA secondary structure by using the sparse dynamic programming technique. A large number of novel RNA structural motif instances and ncRNA elements have been discovered throughout these studies. We anticipate that these computational methods will significantly facilitate the analysis of ncRNA structures in the future.
Ph.D.
Doctorate
Computer Science
Engineering and Computer Science
Computer Science

Bücher zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Gavrilova, Marina L. Transactions on Computational Science IX: Special Issue on Voronoi Diagrams in Science and Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

International Symposium on Frontiers of Computational Science (2005 Nagoya, Japan). Frontiers of computational science: Proceedings of the International Symposium on Frontiers of Computational Science 2005. Berlin: Springer, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Kang. Life System Modeling and Intelligent Computing: International Conference on Life System Modeling and Simulation, LSMS 2010, and International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, Wuxi, China, September 17-20, 2010, Proceedings, Part II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Yongjie (Jessica). Image-Based Geometric Modeling and Mesh Generation. Dordrecht: Springer Netherlands, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

O'Connor, Rory V. Software Process Improvement and Capability Determination: 11th International Conference, SPICE 2011, Dublin, Ireland, May 30 – June 1, 2011. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Perelman, Yevgeny. The NeuroProcessor: An Integrated Interface to Biological Neural Networks. Dordrecht: Springer Science+Business Media B.V., 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Konagaya, Akihiko. Grid Computing in Life Science: First International Workshop on Life Science Grid, LSGRID 2004 Kanazawa, Japan, May 31-June 1, 2004, Revised Selected and Invited Papers. Berlin: Springer, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

International ICST Conference on Nano-Networks. Nano-Net: 4th international ICST conference, Nano-Net 2009, Lucerne, Switzerland, October 18-20, 2009, proceedings. Berlin: Springer, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Álvarez, José R. Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. Berlin Heidelberg: Springer-Verlag., 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ganguly, Niloy. Dynamics On and Of Complex Networks: Applications to Biology, Computer Science, and the Social Sciences. Boston: Birkhäuser Boston, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Molina-Recio, Guillermo, Laura García-Hernández, Antonio Castilla-Melero, Juan M. Palomo-Romero, Rafael Molina-Luque, Antonio A. Sánchez-Muñoz, Antonio Arauzo-Azofra und Lorenzo Salas-Morera. „Impact of Health Apps in Health and Computer Science Publications. A Systematic Review from 2010 to 2014“. In Bioinformatics and Biomedical Engineering, 24–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16480-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Collins, James J. „Engineering Gene Regulatory Networks: A Reductionist Approach to Systems Biology“. In Lecture Notes in Computer Science, 505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11415770_38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nagel, Wolfgang, und Christoph Zenger. „Engineering and Computer-Science“. In High Performance Computing in Science and Engineering ’98, 375–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58600-2_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zenger, Christoph. „Computer Science“. In High Performance Computing in Science and Engineering ’01, 483. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zenger, Christoph. „Computer Science“. In High Performance Computing in Science and Engineering ’99, 445. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59686-5_42.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shafer, Wade H. „Communications Engineering and Computer Science“. In Masters Theses in the Pure and Applied Sciences, 99–123. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5969-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shafer, Wade H. „Communications Engineering and Computer Science“. In Masters Theses in the Pure and Applied Sciences, 102–31. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2453-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shafer, Wade H. „Communications Engineering and Computer Science“. In Masters Theses in the Pure and Applied Sciences, 123–56. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1969-0_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shafer, Wade H. „Communications Engineering and Computer Science“. In Masters Theses in the Pure and Applied Sciences, 113–38. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7391-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shafer, Wade H. „Communications Engineering and Computer Science“. In Masters Theses in the Pure and Applied Sciences, 125–51. Boston, MA: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4615-7388-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Chilana, Parmit K., Carole L. Palmer und Andrew J. Ko. „Comparing bioinformatics software development by computer scientists and biologists: An exploratory study“. In 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering (SECSE). IEEE, 2009. http://dx.doi.org/10.1109/secse.2009.5069165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fando, Roman, und Maria Klavdieva. „Bioinformatics: Past and Present“. In 2018 International Conference on Engineering Technologies and Computer Science (EnT). IEEE, 2018. http://dx.doi.org/10.1109/ent.2018.00013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Run-ze, Zhang, Xu Hao, Xu Xiang-rong und Yu Ling-guo. „Research of path planning based on synthetic biology and DNA computer“. In 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 2015. http://dx.doi.org/10.1109/icsess.2015.7339233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sharif, J. M., M. S. Latiff, M. A. Ngadi, A. B. A. Hamid, M. S. S. Omar und M. M. A. Jamil. „Spatio-temporal Application for Collaborative Issues in Bioinformatics Datasets“. In 2008 International Conference on Computer Science and Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/csse.2008.338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Dexing, Lixia Cui, Yanhua Wang, Hongchun Yuan und Jian Zhang. „Association Rule Mining Based on Concept Lattice in Bioinformatics Research“. In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Gao, Yanlong Wu, Shijun Xiao und Canghai Li. „Bioinformatics Analysis of Mycobacterium Tuberculosis Gene rspL and Its Mutation“. In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rutkowski, Tomasz M. „Student teaching and research laboratory focusing on brain-computer interface paradigms - A creative environment for computer science students -“. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Huang, Angkana, und Apirak Hoonlor. „A multi-layer graph analytics to identify bioinformatics tool usage practices from tool directories and PubMed indexed cross-citations“. In 2016 International Computer Science and Engineering Conference (ICSEC). IEEE, 2016. http://dx.doi.org/10.1109/icsec.2016.7859911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Johnson, Bruce. „A Bioinformatics-Inspired Adaptation to Ukkonen's Edit Distance Calculating Algorithm and Its Applicability towards Distributed Data Mining“. In 2008 International Conference on Computer Science and Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/csse.2008.1014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Si, Shan, Nie Peng, Jiang Li, Yuwen Yan und Xiaojun Yan. „Bioinformatics Analysis on Molecular Mechanism of Poria Cocos in Treatment of Jaundice“. In 2016 International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iccia-16.2016.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Engineering, Computer|Biology, Bioinformatics|Computer Science":

1

Chakraborty, Srijani. Promises and Challenges of Systems Biology. Nature Library, Oktober 2020. http://dx.doi.org/10.47496/nl.blog.09.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Modern systems biology is essentially interdisciplinary, tying molecular biology, the omics, bioinformatics and non-biological disciplines like computer science, engineering, physics, and mathematics together.
2

Hollingsworth, Jeffrey K. High-end-Computer System Performance: Science and Engineering - Final Report. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1033921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Malek, Miroslaw. ONR Europe Reports. Computer Science/Computer Engineering in Central Europe: A Report on Czechoslovakia, Hungary, and Poland. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada264083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Daniel Reed. PERC 2 High-End Computer System Performance: Scalable Science and Engineering. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/927308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hashemian, Hassan. Infrastructure Academy Transportation Program. Mineta Transportation Institute, Januar 2021. http://dx.doi.org/10.31979/mti.2021.1919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The College of Engineering, Computer Science, and Technology at the California State University, Los Angeles has expanded its National Summer Transportation Institute into a year-long program by creating the Infrastructure Academy Transportation Program (IATP). The goal of this program is to build a pipeline of diverse, well qualified young people for the transportation industry. The program works with high school students and teachers to offer academic courses, basic skills, workforce readiness training, internships, extracurricular activities, and career placements to prepare students and place them into the Science, Technology, Engineering, and Math (STEM) College track. The academy emphasizes on transportation as an industry sector and aims to increase the number of underrepresented minorities and women who directly enter the transportation workforce. It also aims at increasing the number of young people who enter college to study engineering or technology and subsequently pursue careers in transportation- and infrastructure-related careers. The IATP was conducted as a full-year program with 30 student participants from high schools.
6

Knorr, Jeffrey B., und Murali Tummala. Summary of Research 2001, Department of Electrical and Computer Engineering, Graduate School of Engineering and Applied Sciences. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada415421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Silbar, R. R. A computer-based ``laboratory`` course in mathematical methods for science and engineering: The Legendre Polynomials module. Final report. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/314117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weinberger, Catherine. Engineering Educational Opportunity: Impacts of 1970s and 1980s Policies to Increase the Share of Black College Graduates with Major in Engineering or Computer Science. Cambridge, MA: National Bureau of Economic Research, August 2017. http://dx.doi.org/10.3386/w23703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Appoev, R. K., und Zh V. Ignatenko. Electronic educational and methodical complex of discipline "Operations research and optimization methods" (in areas of training 38.00.00 Economics and Management, 09.00.00 Computer Science and Engineering, 44.00.00 Education and pedagogical sciences). North-Caucasian Social Institute, Juni 2016. http://dx.doi.org/10.12731/appoevignatenko.01062016.21898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie